Practice set 3

For Questions 1 to 12, select the correct answer A, B, C or D.

1 The quotient rule for differentiating $y = \frac{u}{u}$ is:

A
$$y' = \frac{uv' - vu'}{v^2}$$
 B $\frac{u'v - v'u}{v^2}$ **C** $v' = u/v + v'u$ **D** $v' = uv' + v'u$

$$\mathbf{B} = \frac{u'v - v'u}{r^2}$$

$$\mathbf{C} \qquad y' = u'v + v'u$$

$$\mathbf{D} \qquad \mathbf{y'} = uv' + vu'$$

2 If $f(x) = x^2$ and g(x) = 2x + 1, the composite function g(f(x)) is given by:

A
$$(2x+1)^2$$

B
$$(2x)^2 + 1$$

C
$$2x + 1^2$$

D
$$2x^2 + 1$$

3 The number of employees, N, is inversely proportional to the time, t, it takes to do a stocktake. What is the equation showing this information?

$$\mathbf{A} \quad N = kt$$

$$\mathbf{B} \qquad N = t + k$$

$$\mathbf{B} \quad N = t + k \qquad \qquad \mathbf{C} \quad N = \frac{k}{t} \qquad \qquad \mathbf{D} \quad N = \frac{t}{k}$$

4 Find the derivative of $(3x-2)^8$.

A
$$(3x-2)^7$$

B
$$8(3x-2)^7$$

C
$$8x^7(3x-2)$$

D
$$24(3x-2)^7$$

5 Find the probability of drawing out a blue and a white ball from a bag containing 7 blue and 5 white balls if the first ball is not replaced before taking out the second.

A
$$\frac{70}{121}$$

B
$$\frac{70}{144}$$

c
$$\frac{1225}{17424}$$

D
$$\frac{35}{66}$$

6 The equation of a circle with radius 3 and centre (-1, 4) is:

A
$$(x-1)^2 + (y+4)^2 = 3$$

B
$$(x-1)^2 + (y+4)^2 = 9$$

C
$$(x+1)^2 + (y-4)^2 = 9$$

D
$$(x+1)^2 + (y-4)^2 = 3$$

7 If $f(x) = 2x^2 - 3x + 1$ and $g(x) = (x + 3)^2$ find the degree of y = f(x)g(x).

8 Find the domain of $f(x) = \frac{2}{x+7}$.

A
$$(-\infty, 7) \cup (7, \infty)$$
 B $(-\infty, -7) \cup (-7, \infty)$ **C** $(-\infty, 7) \cap (7, \infty)$ **D** $(-\infty, -7) \cap (-7, \infty)$

C
$$(-\infty, 7) \cap (7, \infty)$$

$$\mathbf{D} \quad (-\infty, -7) \cap (-7, \infty)$$

9 If the displacement of a particle is given by $x = 2t^3 + 6t^2 - 4t + 10$, the initial velocity is:

- **10** In a group of 25 students, 19 catch a train to school and 21 catch a bus. If one of these students is chosen at random, find the probability that the student only catches a bus to school.
- $C = \frac{3}{5}$
- **11** EXTI A polynomial equation P(x) = 0 has multiplicity 2 at x = a. The equation of the polynomial is:
 - $\mathbf{A} \quad P(x) = k(x+a)^2 Q(x)$
- **B** P(x) = k(x a)O(x)
- P(x) = k(x+a)Q(x)
- **D** $P(x) = k(x a)^2 Q(x)$
- **12** Conditional probability P(A|B) is given by:
 - $\mathbf{A} \quad \frac{P(A \cup B)}{P(B)}$
- $\mathbf{B} \quad \frac{P(A \cap B)}{P(A)}$
- $\mathbf{C} \quad \frac{P(A \cup B)}{P(A)}$
- $\mathbf{D} \quad \frac{P(A \cap B)}{P(R)}$
- **13** Differentiate:
 - **a** $y = x^9 4x^2 + 7x + 3$ **b** $y = 2x(x^2 1)$ **c** $y = 3x^{-4}$ **d** $y = \frac{5}{2x^5}$ **e** $y = \sqrt{x^3}$ **f** $y = (2x + 3)^7$

- **d** $y = \frac{5}{2x^5}$

- **g** $y = \frac{1}{(x^2 7)^4}$
- **h** $y = \sqrt[3]{5x+1}$ **i** $y = \frac{5x^2-1}{2x+3}$
- **14** Sketch the graph of:
 - **a** $y = \frac{4}{2x 4}$
- **b** $P(x) = x^3 + x^2 2x$ **c** y = |x 1|

- **d** $x^2 + y^2 = 25$
- **e** $f(x) = -\sqrt{1-x^2}$ **f EXII** $x = 2t, y = 4t^2 4$
- 15 In a class of 25 students, 11 play guitar, 9 play the piano, while 8 don't play either instrument. If one student is selected at random from the class, find the probability that this student will play:
 - both guitar and piano
 - b neither guitar or piano
 - only guitar. C

- **16** The volume in litres of a rectangular container that is leaking over time t minutes is given by $V = -t^2 + 4t + 100$. Find:
 - **q** the initial volume
 - **b** the volume after 10 minutes
 - **c** the rate of change in volume after 10 minutes
 - **d** how long it will take, to 1 decimal place, until the container is empty.
- **17 a** Find the equation of the tangent to the curve $y = x^3 3x$ at the point P = (-2, -2).
 - **b** Find the equation of the normal to $y = x^3 3x$ at *P*.
 - **c** Find the point Q where this normal cuts the x-axis.
- **18** Two dice are thrown. Find the probability of throwing:
 - **a** double 1
- **b** any double
- c at least one 3

- **d** a total of 6
- **e** a total of at least 8.
- **19** The function $f(x) = ax^2 + bx + c$ has a tangent at (1, -3) with a gradient of -1. It also passes through (4, 3). Find the values of a, b and c.
- **20** Find the equation of the circle with centre (-2, -3) and radius 5 units.
- **21** Find the centre and radius of the circle with equation:
 - $x^2 + 6x + y^2 10y 15 = 0$
- **b** $x^2 + 10x + y^2 6y + 30 = 0$

- **22** $f(x) = 3x^2 4x + 9$.
 - **a** Find f(x+h) f(x).
 - **b** Show by differentiating from first principles that f'(x) = 6x 4.
- **23 a** Find the equation of the tangent to the curve $y = x^3 2$ at the point P(1, -1).
 - **b** The curve $y = x^3 2$ meets the y-axis at Q. Find the equation of PQ.
 - Find the equation of the normal to $y = x^3 2$ at the point (-1, -3).
 - **d** Find the point *R* where this normal cuts the *x*-axis.
- **24** EXII If $P(x) = (x 7)^5 Q(x)$, show that P(7) = P'(7) = 0.
- **25** 100 cards are numbered from 1 to 100. If one card is chosen at random, find the probability of selecting:
 - an even number less than 30
 - **b** an odd number or a number divisible by 9.

- **26** A bag contains 5 white, 6 yellow and 3 blue balls. Two balls are chosen at random from the bag without replacement. Find the probability of choosing:
 - **a** 2 blue balls
- **b** a white ball and a yellow ball
- **27** If Scott buys 10 tickets, find the probability that he wins both first and second prizes in a raffle in which 100 tickets are sold.
- **28** Two dice are rolled. Find the probability of rolling a total:
 - a of 8

- **b** less than 7
- **c** greater than 9

- **d** of 4 or 5
- **e** that is an odd number.
- **29** For the Venn diagram, find:

a P(A|B)

- **b** P(B|A)
- **30** A bag contains 5 red, 7 blue and 9 yellow balls. Cherylanne chooses 2 balls at random from the bag. Find the probability of that she chooses:
 - a blue given the first ball was yellow
 - **b** red given the first ball was blue.
- **31** If $f(x) = 2x^3 5x^2 + 4x 1$, find f(-2) and f'(-2).
- **32 a** Find the gradient of the secant to the curve $f(x) = 2x^3 7$ between the point (2, 9) and the point where:
 - i x = 2.01

- ii x = 1.99
- **b** Hence estimate the gradient of the tangent to the curve at (2, 9).

ISBN 9780170413299 Practice set 3 **(529**

33 Sketch the gradient function for each curve.

a

- **34** The area of a community garden in m^2 is given by $A = 7x x^2$ where x is the length of the garden.
 - **a** Find the area when the length is:
- ii 4.5 m.
- **b** Find the length when the area is 8 m², to 1 decimal place.
- Sketch the graph of the area function.
- d Find the maximum possible area.
- **35** Solve graphically:
 - |x + 2| = 3
- **b** $|3y-7| \le 20$ **c** $|3y-4| \le 5$
- **36** The radius of a snowball grows at a constant rate of 0.15 cm s^{-1} as it rolls down a hill. Find the change in its volume when the radius is 8.5 cm.
- **37** If $f(x) = x^2 1$ and $g(x) = x^3 + 3$, find:
 - the degree of y = f(x)g(x)
 - the leading coefficient of y = f(x)g(x)
 - the constant term of y = f(x)g(x).
- **38** EXII Find the rate of change in radius of a melting sphere of ice when its radius is 8 cm, if the volume is decreasing at a constant rate of 2.5 cm³ per second.
- **39** The displacement x cm of an object moving along a straight line over time t seconds is given by $x = 2t^3 - 13t^2 + 17t + 12$.
 - Find the initial displacement, velocity and acceleration.
 - Find the displacement, velocity and acceleration after 2 seconds.
 - **EXII** Find the times when the object is at the origin.
 - When (correct to one decimal place) is the object moving at constant speed?

- **40** If $A = \{1, 3, 4, 5\}$ and $B = \{2, 3, 5, 6\}$:
 - find $A \cup B$
 - b find $A \cap B$
 - draw a Venn diagram showing this information.
- **41** Find the equation of the tangent to the curve $y = 3x^2 6x + 7$ at the point (2, 7).
- **42** Find the derivative of:

a
$$y = x^{-3}$$

b
$$y = \sqrt{x^3}$$

$$\mathbf{c} \qquad y = \frac{1}{x^2}$$

b
$$y = \sqrt{x^3}$$
 c $y = \frac{1}{x^2}$ **d** $y = \frac{(7x+4)^2}{3x-1}$

e
$$y = (5x^2 + 1)(2x - 3)^4$$
 f $y = (3x + 1)^5$ **g** $y = \sqrt{2x - 1}$

f
$$y = (3x)$$

$$\mathbf{g} \quad y = \sqrt{2x - 1}$$

- **43** EXII Show that if a polynomial P(x) has a double root at x = 3, P(3) = P'(3) = 0.
- **44** $f(x) = x^2 2$ and g(x) = 2x 1.
 - **a** Find the equation of:

$$i \quad y = f(x) + g(x)$$

$$ii y = f(x)g(x)$$

$$iii \quad y = g(x) - f(x)$$

$$iv \quad y = \frac{g(x)}{f(x)}$$

b Sketch the graph of:

$$i \quad y = -f(x)$$

ii
$$y = g(-x)$$

$$iii \quad y = -g(-x)$$

c EXTI Sketch the graph of:

$$i \quad y = f(x) + g(x)$$

$$ii y = f(x)g(x)$$

$$iii \quad y^2 = f(x)$$

$$iv \quad y = \frac{1}{g(x)}$$

$$\mathbf{v} \quad y = \big| f(x) \big|$$

$$vi \quad y = g(|x|)$$

- **45 a** Find the centre and radius of the circle $x^2 + 2x + y^2 6y 6 = 0$.
 - **b** Find its domain and range.
- **46** EXTI If f(x) = x 9 and $g(x) = x^2 + 7$, sketch the graph of:

a
$$y = f(x) + g(x)$$
 b $y = f(|x|)$

b
$$y = f(|x|)$$

c
$$y = \frac{1}{f(x)}$$
 d $y^2 = f(x)$

$$\mathbf{d} \quad y^2 = f(x)$$

- **47** EXII If f(x) = (x+1)(x-5)(x+3), sketch $y^2 = f(x)$ and state the domain and range.
- **48** Find the equation of the normal to the curve $y = x^2 4x + 1$ at the point (3, -2).

49 Differentiate:

a
$$y = 2x^4 - 5x^3 + 3x^2 - x - 4$$
 b $y = \frac{1}{2x^5}$ **c** $y = \sqrt{x}$ **d** $y = (2x - 3)^7$ **e** $y = 3x^4(2x - 5)^7$ **f** $y = \frac{5x + 7}{3x - 2}$

b
$$y = \frac{1}{2x^5}$$

d
$$y = (2x - 3)^{2}$$

e
$$y = 3x^4(2x - 5)^7$$

f
$$y = \frac{5x + 7}{3x - 2}$$

50 If $f(x) = x^2 + 1$ and g(x) = x - 3:

find the degree of:

$$i \quad f(x) + g(x)$$

ii
$$f(x)g(x)$$

b EXTI sketch the graph of:

$$i \quad y = f(x) + g(x)$$

ii
$$y = |g(x)|$$

$$iii \quad y = \frac{1}{g(x)}$$

$$iv \quad y^2 = f(x)$$

$$\mathbf{v} \quad y = f(x)g(x)$$

vi
$$y^2 = g(x)$$

51 A coin is tossed and a die thrown. Find the probability of getting: b

52 Find the domain and range of:

$$\mathbf{a} \qquad y = x^3 + 1$$

b
$$y = 1 - x^2$$

$$x^2 + 4x + y^2 - 2y - 20 = 0$$

$$\mathbf{d} \qquad y = \frac{4}{x+2}$$

53 EXII The monic polynomial equation P(x) = 0 has a root of multiplicity 4 at x = -2.

Write an expression for the polynomial P(x).

Show that P(-2) = P'(-2) = 0.

54 If $f(x) = x^3$ and g(x) = 2x + 5, find:

a
$$f(g(x))$$

b
$$g(f(x))$$

55 The table below shows the results of an experiment in tossing 2 coins.

Result	Frequency
НН	24
HT	15
TH	38
TT	23

Add a column for relative frequencies as fractions.

From the table, find the probability of tossing:

i 2 tails

ii a head and a tail in any order

What is the theoretical probability of tossing:

i 2 tails?

a head and a tail in any order?

- **56** Find the equation of the tangent to the curve $y = x^3 7x + 3$ at the point where x = 2.
- **57** Find in exact form:
 - **a** the length of the arc
 - **b** the area of the sector

cut off by an angle of 40° at the centre of a circle with radius 4 cm.

58 EXII Mason's wardrobe has 8 pairs of jeans, 12 T-shirts and 5 pairs of shoes.

Mason decides to wear a different combination of jeans, T-shirt and shoes every day.

How many days will it take for him to wear every possible combination?

- **59** If f(x) = |x| 2 find:
 - a f(-2)

b f(0)

- c f(m+1)
- 60 The probability that Despina passes her first maths test is 64% and the probability that she will pass both the first and second tests is 48%. Find the probability that Despina passes the second test given that she passes the first test.
- **61** If P(L) = 45%, $P(L \cap M) = 5.4\%$ and P(M) = 12%, show that *L* and *M* are independent.
- **62** Write each function in parametric form using the equation for x given.
 - **a** $y = 2x^2 + 6x, x = 8t$
- **b** 3x 8y + 12 = 0, x = 2t
- $x^2 + y^2 = 1, x = \cos t$
- **d** $(x+3)^2 + (y-1)^2 = 16, x = 4 \cos t 3$
- **63** Given P(X) = 0.26, P(Y) = 0.15 and $P(X \cup Y) = 0.371$, show that *X* and *Y* are independent.
- **64** EXII Write each set of parametric equations in Cartesian form.
 - **a** x = 2p 3, y = p 2
- **b** $x = 3t + 1, y = 6t^2$
- $\mathbf{c} \qquad x = 4\cos\theta, y = 4\sin\theta$
- **d** $x = 3 2 \sin \theta, y = 2 + 2 \cos \theta$
- **65** State whether events *A* and *B* are mutually exclusive if P(A) = 0.18, $P(A \cup B) = 0.5$ and P(B) = 0.32.

ISBN 9780170413299 Practice set 3 (533