Practice set 3

For Questions 1 to $\mathbf{1 2}$, select the correct answer $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}.
1 The quotient rule for differentiating $y=\frac{u}{v}$ is:
A $y^{\prime}=\frac{u v^{\prime}-v u^{\prime}}{v^{2}}$
B $\frac{u^{\prime} v-v^{\prime} u}{v^{2}}$
C $y^{\prime}=u^{\prime} v+v^{\prime} u$
D $y^{\prime}=u v^{\prime}+v u^{\prime}$

2 If $f(x)=x^{2}$ and $g(x)=2 x+1$, the composite function $g(f(x))$ is given by:
A $(2 x+1)^{2}$
B $(2 x)^{2}+1$
C $2 x+1^{2}$
D $2 x^{2}+1$

3 The number of employees, N, is inversely proportional to the time, t, it takes to do a stocktake. What is the equation showing this information?
A $N=k t$
B $\quad N=t+k$
C $\quad N=\frac{k}{t}$
D $\quad N=\frac{t}{k}$

4 Find the derivative of $(3 x-2)^{8}$.
A $(3 x-2)^{7}$
B $8(3 x-2)^{7}$
C $8 x^{7}(3 x-2)$
D $24(3 x-2)^{7}$

5 Find the probability of drawing out a blue and a white ball from a bag containing 7 blue and 5 white balls if the first ball is not replaced before taking out the second.
A $\frac{70}{121}$
B $\frac{70}{144}$
C $\frac{1225}{17424}$
D $\frac{35}{66}$

6 The equation of a circle with radius 3 and centre $(-1,4)$ is:
A $(x-1)^{2}+(y+4)^{2}=3$
B $(x-1)^{2}+(y+4)^{2}=9$
C $(x+1)^{2}+(y-4)^{2}=9$
D $(x+1)^{2}+(y-4)^{2}=3$

7 If $f(x)=2 x^{2}-3 x+1$ and $g(x)=(x+3)^{2}$ find the degree of $y=f(x) g(x)$.
A 2
B 4
C 3
D 5

8 Find the domain of $f(x)=\frac{2}{x+7}$.
A $(-\infty, 7) \cup(7, \infty)$
B $(-\infty,-7) \cup(-7, \infty)$
C $(-\infty, 7) \cap(7, \infty)$
D $(-\infty,-7) \cap(-7, \infty)$

9 If the displacement of a particle is given by $x=2 t^{3}+6 t^{2}-4 t+10$, the initial velocity is:
A - 4
B 10
C 12
D 14

10 In a group of 25 students, 19 catch a train to school and 21 catch a bus. If one of these students is chosen at random, find the probability that the student only catches a bus to school.
A $\frac{6}{25}$
B $\quad \frac{21}{25}$
C $\frac{3}{5}$
D $\frac{3}{20}$

11 EXTI A polynomial equation $P(x)=0$ has multiplicity 2 at $x=a$. The equation of the polynomial is:
A $P(x)=k(x+a)^{2} Q(x)$
B $\quad P(x)=k(x-a) Q(x)$
C $P(x)=k(x+a) Q(x)$
D $\quad P(x)=k(x-a)^{2} Q(x)$

12 Conditional probability $P(A \mid B)$ is given by:
A $\frac{P(A \cup B)}{P(B)}$
B $\frac{P(A \cap B)}{P(A)}$
C $\frac{P(A \cup B)}{P(A)}$
D $\frac{P(A \cap B)}{P(B)}$

13 Differentiate:
a $y=x^{9}-4 x^{2}+7 x+3$
b $\quad y=2 x\left(x^{2}-1\right)$
c $y=3 x^{-4}$
d $y=\frac{5}{2 x^{5}}$
e $y=\sqrt{x^{3}}$
f $\quad y=(2 x+3)^{7}$
g $y=\frac{1}{\left(x^{2}-7\right)^{4}}$
h $y=\sqrt[3]{5 x+1}$
i $y=\frac{5 x^{2}-1}{2 x+3}$

14 Sketch the graph of:
a $y=\frac{4}{2 x-4}$
b $\quad P(x)=x^{3}+x^{2}-2 x$
c $\quad y=|x-1|$
d $x^{2}+y^{2}=25$
e $f(x)=-\sqrt{1-x^{2}}$
f EXT1 $x=2 t, y=4 t^{2}-4$

15 In a class of 25 students, 11 play guitar, 9 play the piano, while 8 don't play either instrument. If one student is selected at random from the class, find the probability that this student will play:
a both guitar and piano
b neither guitar or piano
c only guitar.

16 The volume in litres of a rectangular container that is leaking over time t minutes is given by $V=-t^{2}+4 t+100$. Find:
a the initial volume
b the volume after 10 minutes
c the rate of change in volume after 10 minutes
d how long it will take, to 1 decimal place, until the container is empty.
17 a Find the equation of the tangent to the curve $y=x^{3}-3 x$ at the point $P=(-2,-2)$.
b Find the equation of the normal to $y=x^{3}-3 x$ at P.
c Find the point Q where this normal cuts the x-axis.
18 Two dice are thrown. Find the probability of throwing:
a double 1
b any double
c at least one 3
d a total of 6
e a total of at least 8 .

19 The function $f(x)=a x^{2}+b x+c$ has a tangent at $(1,-3)$ with a gradient of -1 .
It also passes through $(4,3)$. Find the values of a, b and c.
20 Find the equation of the circle with centre $(-2,-3)$ and radius 5 units.
21 Find the centre and radius of the circle with equation:
a $x^{2}+6 x+y^{2}-10 y-15=0$
b $x^{2}+10 x+y^{2}-6 y+30=0$
$22 f(x)=3 x^{2}-4 x+9$.
a Find $f(x+h)-f(x)$.
b Show by differentiating from first principles that $f^{\prime}(x)=6 x-4$.
23 a Find the equation of the tangent to the curve $y=x^{3}-2$ at the point $P(1,-1)$.
b The curve $y=x^{3}-2$ meets the y-axis at Q. Find the equation of $P Q$.
c Find the equation of the normal to $y=x^{3}-2$ at the point $(-1,-3)$.
d Find the point R where this normal cuts the x-axis.
24 EXTI If $P(x)=(x-7)^{5} Q(x)$, show that $P(7)=P^{\prime}(7)=0$.
25100 cards are numbered from 1 to 100 . If one card is chosen at random, find the probability of selecting:
a an even number less than 30
b an odd number or a number divisible by 9 .

26 A bag contains 5 white, 6 yellow and 3 blue balls. Two balls are chosen at random from the bag without replacement. Find the probability of choosing:
a 2 blue balls
b a white ball and a yellow ball

27 If Scott buys 10 tickets, find the probability that he wins both first and second prizes in a raffle in which 100 tickets are sold.

28 Two dice are rolled. Find the probability of rolling a total:
a of 8
b less than 7
c greater than 9
d of 4 or 5
e that is an odd number.

29 For the Venn diagram, find:

a $\quad P(A \mid B)$
b $\quad P(B \mid A)$

30 A bag contains 5 red, 7 blue and 9 yellow balls. Cherylanne chooses 2 balls at random from the bag. Find the probability of that she chooses:
a blue given the first ball was yellow
b red given the first ball was blue.
31 If $f(x)=2 x^{3}-5 x^{2}+4 x-1$, find $f(-2)$ and $f^{\prime}(-2)$.
32 a Find the gradient of the secant to the curve $f(x)=2 x^{3}-7$ between the point $(2,9)$ and the point where:
i $x=2.01$
ii $\quad x=1.99$
b Hence estimate the gradient of the tangent to the curve at $(2,9)$.

33 Sketch the gradient function for each curve.
a

b

34 The area of a community garden in m^{2} is given by $A=7 x-x^{2}$ where x is the length of the garden.
a Find the area when the length is:

$$
\text { i } 3 \mathrm{~m} \quad \text { ii } \quad 4.5 \mathrm{~m} \text {. }
$$

b Find the length when the area is $8 \mathrm{~m}^{2}$, to 1 decimal place.
c Sketch the graph of the area function.
d Find the maximum possible area.
35 Solve graphically:
a $|x+2|=3$
b EXT1 $|3 y-7| \leq 20$
c EXT1 $\frac{3}{x-4}<5$

36 EXT1 The radius of a snowball grows at a constant rate of $0.15 \mathrm{~cm} \mathrm{~s}^{-1}$ as it rolls down a hill. Find the change in its volume when the radius is 8.5 cm .

37 If $f(x)=x^{2}-1$ and $g(x)=x^{3}+3$, find:
a the degree of $y=f(x) g(x)$
b the leading coefficient of $y=f(x) g(x)$
c the constant term of $y=f(x) g(x)$.
38 EXTI Find the rate of change in radius of a melting sphere of ice when its radius is 8 cm , if the volume is decreasing at a constant rate of $2.5 \mathrm{~cm}^{3}$ per second.

39 The displacement $x \mathrm{~cm}$ of an object moving along a straight line over time t seconds is given by $x=2 t^{3}-13 t^{2}+17 t+12$.
a Find the initial displacement, velocity and acceleration.
b Find the displacement, velocity and acceleration after 2 seconds.
c EXTI Find the times when the object is at the origin.
d EXT1 When (correct to one decimal place) is the object moving at constant speed?

40 If $A=\{1,3,4,5\}$ and $B=\{2,3,5,6\}$:
a find $A \cup B$
b find $A \cap B$
c draw a Venn diagram showing this information.
41 Find the equation of the tangent to the curve $y=3 x^{2}-6 x+7$ at the point $(2,7)$.
42 Find the derivative of:
a $y=x^{-3}$
b $y=\sqrt{x^{3}}$
c $y=\frac{1}{x^{2}}$
d $y=\frac{(7 x+4)^{2}}{3 x-1}$
e $\quad y=\left(5 x^{2}+1\right)(2 x-3)^{4}$
f $y=(3 x+1)^{5}$
g $y=\sqrt{2 x-1}$

43 EXTI Show that if a polynomial $P(x)$ has a double root at $x=3, P(3)=P^{\prime}(3)=0$.
$44 f(x)=x^{2}-2$ and $g(x)=2 x-1$.
a Find the equation of:
i $y=f(x)+g(x)$
ii $\quad y=f(x) g(x)$
iii $y=g(x)-f(x)$
iv $y=\frac{g(x)}{f(x)}$
b Sketch the graph of:
i $y=-f(x)$
ii $\quad y=g(-x)$
iii $y=-g(-x)$
c EXTI Sketch the graph of:
i $y=f(x)+g(x)$
ii $\quad y=f(x) g(x)$
iii $y^{2}=f(x)$
iv $y=\frac{1}{g(x)}$
v $y=|f(x)|$
vi $y=g(|x|)$

45 a Find the centre and radius of the circle $x^{2}+2 x+y^{2}-6 y-6=0$.
b Find its domain and range.
46 EXT1 If $f(x)=x-9$ and $g(x)=x^{2}+7$, sketch the graph of:
a $\quad y=f(x)+g(x)$
b $\quad y=f(|x|)$
c $y=\frac{1}{f(x)}$
d $y^{2}=f(x)$

47 EXT1 If $f(x)=(x+1)(x-5)(x+3)$, sketch $y^{2}=f(x)$ and state the domain and range.
48 Find the equation of the normal to the curve $y=x^{2}-4 x+1$ at the point $(3,-2)$.

49 Differentiate:
a $y=2 x^{4}-5 x^{3}+3 x^{2}-x-4$
b $y=\frac{1}{2 x^{5}}$
c $y=\sqrt{x}$
d $y=(2 x-3)^{7}$
e $y=3 x^{4}(2 x-5)^{7}$
f $y=\frac{5 x+7}{3 x-2}$

50 If $f(x)=x^{2}+1$ and $g(x)=x-3$:
a find the degree of:
i $f(x)+g(x)$
ii $\quad f(x) g(x)$
b EXT1 sketch the graph of:
i $y=f(x)+g(x)$
ii $\quad y=|g(x)|$
iii $y=\frac{1}{g(x)}$
v $y=f(x) g(x)$
iv $y^{2}=f(x)$
vi $y^{2}=g(x)$

51 A coin is tossed and a die thrown. Find the probability of getting:
a a head and a 6
b a tail and an odd number.

52 Find the domain and range of:
a $y=x^{3}+1$
b $y=1-x^{2}$
c $x^{2}+4 x+y^{2}-2 y-20=0$
d $y=\frac{4}{x+2}$

53 EXTI The monic polynomial equation $P(x)=0$ has a root of multiplicity 4 at $x=-2$.
a Write an expression for the polynomial $P(x)$.
b Show that $P(-2)=P^{\prime}(-2)=0$.
54 If $f(x)=x^{3}$ and $g(x)=2 x+5$, find:
a $\quad f(g(x))$
b $\quad g(f(x))$

55 The table below shows the results of an experiment in tossing 2 coins.

Result	Frequency
HH	24
HT	15
TH	38
TT	23

a Add a column for relative frequencies as fractions.
b From the table, find the probability of tossing:
i 2 tails
ii a head and a tail in any order
c What is the theoretical probability of tossing:
i 2 tails?
ii a head and a tail in any order?

56 Find the equation of the tangent to the curve $y=x^{3}-7 x+3$ at the point where $x=2$.

57 Find in exact form:
a the length of the arc
b the area of the sector
cut off by an angle of 40° at the centre of a circle with radius 4 cm .
58 EXT1 Mason's wardrobe has 8 pairs of jeans, 12 T-shirts and 5 pairs of shoes.
Mason decides to wear a different combination of jeans, T-shirt and shoes every day.
How many days will it take for him to wear every possible combination?
59 If $f(x)=|x|-2$ find:
a $\quad f(-2)$
b $\quad f(0)$
c $\quad f(m+1)$

60 The probability that Despina passes her first maths test is 64% and the probability that she will pass both the first and second tests is 48%. Find the probability that Despina passes the second test given that she passes the first test.

61 If $P(L)=45 \%, P(L \cap M)=5.4 \%$ and $P(M)=12 \%$, show that L and M are independent.

62 EXTI Write each function in parametric form using the equation for x given.
a $y=2 x^{2}+6 x, x=8 t$
b $3 x-8 y+12=0, x=2 t$
c $x^{2}+y^{2}=1, x=\cos t$
d $(x+3)^{2}+(y-1)^{2}=16, x=4 \cos t-3$

63 Given $P(X)=0.26, P(Y)=0.15$ and $P(X \cup Y)=0.371$, show that X and Y are independent.
$64 \mathrm{EXTI}^{1}$ Write each set of parametric equations in Cartesian form.
a $x=2 p-3, y=p-2$
b $x=3 t+1, y=6 t^{2}$
c $x=4 \cos \theta, y=4 \sin \theta$
d $x=3-2 \sin \theta, y=2+2 \cos \theta$

65 State whether events A and B are mutually exclusive if $P(A)=0.18$, $P(A \cup B)=0.5$ and $P(B)=0.32$.

